The role of intensified multifactorial intervention on micro- and macrovascular complications in patients with type 2 diabetes

Peter Gæde MD, DMSci, Specialist in Internal Medicine and Endocrinolgy Steno Diabetes Center

An opportunity to make a difference

Peter Gæde MD, DMSci, Specialist in Internal Medicine Steno Diabetes Center

Risk factor profile in diabetes

- Hyperglycaemia
- Blood pressure
- Dyslipidaemia
- Urinary albumin excretion rate
- Smoking
- BMI
- Left ventricular hypertrophy
- Autonomic dysfunction
- Endothelial dysfunction
- Insulin resistance / Hyperinsulinaemia
- Familial predisposition to CVD

Clinical Dogma

I want evidence based diabetology

Steno-2: Major papers

Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study

Peter Gæde, Pernille Vedel, Hans-Henrik Parving, Oluf Pedersen

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 30, 2003

VOL.348 NO.5

Multifactorial Intervention and Cardiovascular Disease in Patients with Type 2 Diabetes

Peter Gæde, M.D., Pernille Vedel, M.D., Ph.D., Nicolai Larsen, M.D., Ph.D., Gunnar V.H. Jensen, M.D., Ph.D., Hans-Henrik Parving, M.D., D.M.Sc., and Oluf Pedersen, M.D., D.M.Sc.

Lancet 1999; 353: 617-22

New Engl J Med 2003; 348: 383-93

Design

- An open, parallel trial comprising 160 Caucasian type 2 diabetic patients with microalbuminuria
- With consealed randomisation patients were allocated either to conventional therapy at their GP or intensive treatment at Steno Diabetes Center

Endpoints

Microvascular disease

- Progression to nephropathy
- Progression in retinopathy
- Progression in neuropathy

Composite for cardiovascular disease*

- Cardiovascular mortality
- Non-fatal myocardial infarction
- Non-fatal stroke
- Revascularization (including CABG and PCI)
- Amputation

* Adapted from HOPE study (Can J Cardiol 1996;12:127-37)

Treatment goals

	Conventional*	Intensive
Haemoglobin A _{1c (%)}	<7.5 / <6.5	<6.5 / <6.5
Fasting s-total cholesterol	<6.5 / <5.0	<5.0 / <4.5
Fasting s-triglycerides	<2.2 / <2.0	<1.7 / <1.7
Systolic BP (mm Hg)	<160 / <135	<140 / <130
Diastolic BP (mm Hg)	<95 / <85	<85 / <80
ACEi irrespective of BP	No / Yes	Yes / Yes
Aspirin as primary prevention	No / No	No / Yes

* Guidelines from the Danish Medical Association 1988 / 2000

Drug treatment

Stepwise, target driven drug intervention

Hyperglycaemia : Sulphonylureas Metformin Insulin

Dyslipidaemia : Statins Fibrates

Hypertension :ACE-inhibitors / All receptor blockersDiureticsCalcium channel blockersβ-blockers

Results after 4 years

Number of patients progressing in microvascular endpoint

Risk factors at 8 years

	Conventional n=63	Intensive n=67
Haemoglobin A1c (%)	9.0	7.9
F-s-total-cholesterol (mg/dl)	220	159
F-s-LDL-cholesterol (mg/dl)	120	81
F-s-triglycerides (mg/dl)	120	66
Systolic BP (mm Hg)	146	132
Diastolic BP (mm Hg)	78	73
Albumin excretion rate (mg/24h)*	99	58

Values are mean

* median

Cardiovascular events

Steno-2: Design

- Planned endpoint examinations at 4, 8 years after randomization and after 60 cases of mortality
- Interventional part of study ended after 8 years

Steno-2: Major papers

The NEW ENGLAND JOURNAL of MEDICINE

N ENGLJ MED 358;6 WWW.NEJM.ORG FEBRUARY 7, 2008

ORIGINAL ARTICLE

Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes

Peter Gæde, M.D., D.M.Sc., Henrik Lund-Andersen, M.D., D.M.Sc., Hans-Henrik Parving, M.D., D.M.Sc., and Oluf Pedersen, M.D., D.M.Sc.

New Engl J Med 2008; 358: 580-91

Risk markers during follow-up

Years of follow-up

Years of follow-up

Years of follow-up

Risk markers at end of Steno-2 Post Trial at 13 years

	Intensive	Standard
	N=55	N=38
HbA _{1c} (%)	7.7	8.0
Cholesterol (mmol/l)	3.8	4.0
LDL-cholesterol (mmol/l)	1.8	2.0
HDL-cholesterol (mmol/l)	1.32	1.22
Triglycerides (mmol/l)	1.12	1.67
Systolic BP (mmHg)	140	146
Diastolic BT (mmHg)	74	73
Albumin excretion rate (mg/24h)*	69	75

*median

Steno-2 Post Trial Patients on target

Percentage of patients obtaining treatment goal for intensive regimen at 13 years

Steno-2 Post Trial: Mortality

Steno-2 Post Trial: Mortality

24 patients died in the intensive group compared to 40 patients in the conventional group

HR = 0.54 (0.32-0.89), P=0.016

30% of patients died in the intensive group compared to 50% of patients in the conventional group

Absolute risk reduction = 20%

Steno-2 Post Trial: CVD Mortality

9 patients died of CVD in the intensive group compared to 19 patients in the conventional group

HR = 0.43 (0.19-0.94), P=0.036

11% of patients died in the intensive group compared to 24% of patients in the conventional group

Absolute risk reduction = 13%

Steno-2 Trial: multiple risk factor intervention in T2DM

Conventional

Intensive

5 0

Steno-2 Post Trial: Any CVD events

Cumulative incidence of patients with a major CVD event during follow-up

Steno-2 Post Trial: Any CVD events

25 patients had a CVD event in the intensive group compared to 48 patients in the conventional group

HR = 0.41 (0.25-0.67), P=0.0003

31% of patients had a CVD event in the intensive group compared to 60% of patients in the conventional group

Absolute risk reduction = 29%

Steno-2 Post Trial: Any CVD events

51 major CVD events in 25 patients (31%) occurred in the intensive group compared to 158 events in 48 patients (60%) in the conventional group

End-stage renal failure requiring dialysis

Cumulative incidence of ESRD (%)

6 patients in the original conventionally treated group versus 1 patient in the intensively treated group progressed to endstage renal disease requiring dialysis treatment

Progression in diabetic retinopathy

Worsening of at least one level in the EURODIAB grading scale

Laser treatment and blindness at 13 years

Progression in autonomic neuropathy

Worsening in orthostatic hypotension or beat-to-beat variation in ECG

Steno-2: Number needed to treat

Number of microalbuminuric patients with type 2 diabetes needed to treat for 13 years to prevent one

Death 5 patients Cardiovascular death 8 patients Major cardiovascular event 3 patients Progression to nephropathy 5 patients Dialysis 16 patients Laser treatment 7 patients

Steno-2: Major clinical results

- A 50 % relative risk reduction in all-cause mortality or CVD mortality after 13 years of follow-up corresponding to an absolute risk reduction of 20% and 13%, respectively
- A 50 % relative risk reduction in major cardiovascular events after 8 years of intervention maintained throughout the rest of follow-up
- A 50 % relative risk reduction in microvascular disease after 4 years of intervention maintained throughout the rest of follow-up

Intensive blood glucose and blood pressure lowering in diabetic patients: the ADVANCE Study

뽷

Ten George Instantons Jacimuthal Ref

ADVANCE

Factorial design

Intensive glucose control using <u>Gliclazide MR</u> + Routine BP lowering therapy <u>Perindopril-Indapamide</u>	Standard glucose control + Routine BP lowering therapy <u>Perindopril-Indapamide</u>
Intensive glucose control using <u>Gliclazide MR</u> + Placebo	Standard glucose control Placebo

∛

THE GEOME INSTITUTS Independent links

New or worsening nephropathy

ADVANCE

Annual event rate %

P for interaction=0.93

Y Ten Geo

All cause mortality

Annual event rate %

P for interaction=0.90

ADVANCE

Ten George besinten Arlensted ikk

ADVANCE

Cardiovascular death

Annual event rate %

P for interaction=0.62

THE GEORGE INSTITUTE Arithmetical Ref.

Clinical Question

Which risk factor intervention is the most important in reducing cardiovascular complications?

Impact of single risk factor interventions to reduce CVD in patients with type 2 diabetes

	Relative risk reduction	Yearly event rate in Steno-2 standard group
None	•••••	7.0%
Cholesterol (0.6 mmol/l)	25%	5.3%
BP (10/5 mm Hg)	27%	3.9%
HbA1 _c (0.9%)	13%	3.4%
Aspirin	9%	3.1%

Cumulative relative risk reduction of about 57%

Huang et al. Am J Med 2001;111:633-642, Turner R.C. BMJ 1998;316:823-828, He et al. JAMA 1999;282:2027-2034, Antitrombotic Trialits BMJ 2002;324:71-86

Prioritizing Treatment Use of risk calculators

UKPDS Risk Engine v Framingham

UKPDS

- Current age
- Sex
- Smoking status
- Systolic blood pressure
- Total cholesterol
- HDL cholesterol
- Atrial fibrillation
- Duration of diabetes
- HbA1c
- Ethnic group

Framingham

- Current age
- Sex
- Smoking status
- Systolic blood pressure
- Total cholesterol
- HDL cholesterol
- Left ventricular hypertrophy
- Diabetes status (yes/no)

UKPDS Risk Engine

🔥 UKPDS Risk Engine v2.0 🛛 🛛 🗡		
- Input		
Age now : 5	6 years	HbA1c: 8.5 %
Diabetes duration :	4 years	Systolic BP : 156 mm Hg
Sex : 🔿 M	ale 💽 Female 🛛 Tota	al cholesterol : 226 mg/dl
Atrial fibrillation : 💿 N	o 🔿 Yes 🛛 HDL	L cholesterol : 40 mg/dl
Ethnicity : Asian-Indian 💌		
Smoking : Current smoker 💌		
		Options >
Output		
	10 year risk 0 15	5 30 100
CHD	: 18,9%	H
Fatal CHD	: 11,6% 💾	
Stroke	: 6,1%	
Fatal stroke	1,1%	
Adjusted for regression dilution		
	Сору	Print
Laiculate	Help	Exit

Heart Disease Risk Score for Steno-2 intensive treatment arm

UKPDS 10 year absolute CHD risk

Stroke Risk Score for Steno-2 intensive treatment arm

UKPDS 10 year absolute stroke risk

Actual contribution of each risk factor in improving the UKPDS *CHD risk score* for Steno-2 intensive treatment arm

Actual contribution of each risk factor in improving the UKPDS *stroke risk score* for Steno-2 intensive treatment arm

Clinical Question

Hyperglycemia is a strong risk marker for CVD in both epidemiological and interventional studies. How low should you go?

Intervention studies in Type-2 Diabetes

ADVANCE and ACCORD Studies 2008

Is tight glucose control harmful?

ACCORD

10,251 middle-aged or older type 2 diabetic patients with either evidence of or increased risk for cardiovascular disease

HR 0.90 (0.78 to 1.04); p = 0.16

N Engl J Med. 2008;358:2545-2559

Glycemic control and CVD outcome

HR 1.22 (1.01 to 1.46); p = 0.04

Is tight glucose control harmful?

ADVANCE

11,140 patients with type 2 diabetes with a history of major macro- or microvascular disease or at least one other risk factor for cardiovascular disease

N Engl J Med 2008;358:2560-72

Glycemic control and CVD outcome

HR 0.93 (0.83 to 1.06), p=0.28

UK Prospective Diabetes Study

20-year Interventional Trial from 1977 to 1997

- 5,102 patients with newly-diagnosed type 2 diabetes recruited between 1977 and 1991
- Median follow-up 10.0 years, range 6 to 20 years
- Results presented at the 1998 EASD Barcelona meeting

10-year Post-Trial Monitoring from 1997 to 2007

- Annual follow-up of the survivor cohort
- Clinic-based for first five years
- Questionnaire-based for last five years

Median overall follow-up 17.0 years, range 16 to 30 years

Post-Trial Changes in HbA_{1c}

All-cause Mortality Hazard Ratio

Intensive (SU/Ins) vs. Conventional glucose control

Glucose control and CVD: meta-analysis

Probability of events of non-fatal myocardial infarction with intensive glucose-lowering versus standard treatment

Ray et al. Lancet 2009; 373: 1765–72

Glucose control and CVD: meta-analysis

Probability of events of *coronary heart disease* with intensive glucoselowering versus standard treatment

Ray et al. Lancet 2009; 373: 1765–72

Glucose control and CVD: meta-analysis

Probability of events of *all-cause mortality* with intensive glucose-lowering versus standard treatment

Ray et al. Lancet 2009; 373: 1765–72

Is tight glucose control harmful?

Reviews/Commentaries/ADA Statements

Medical Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy

A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes

DAVID M. NATHAN, MD¹ JOHN B. BUSE, MD, PHD² RURY R. HOLMAN, FRCP⁵ ROBERT SHERWIN, MD⁶ blood glucose–lowering medications to supplement the older therapies, such as

"Our consensus is that an A1C level of \geq 7% should serve as a call to action to initiate or change therapy with the goal of achieving an A1C level of <7%."

Diabetes Care 2009;32:1-11

Tier 1: Well-validated core therapies

Algorithm for the metabolic management of type 2 diabetes; Reinforce lifestyle interventions at every visit and check A1c every 3 months until A1c is < 7% and then at least every 6 months. The interventions should be changed if A1c is ≥ 7%. Sulfonylureas other than glybenclamide (glyburide) or chlorpropamide. Insufficient clinical use to be confident regarding safety.

ADA/EASD Consensus Statement, Diab Care, Oct 22, 2008 online publication

Impact of medication discontinuation on mortality

1521 patients discharged with Aspirin, β-blocker and Statin following hospitalization for myocardial infarction followed for 12 months

184 patients stopped all three medications within the first month

Ho et al. Arch Intern Med 2006;166:1842-47

Impact of medication discontinuation on mortality

Medication one month after discharge

Ho et al. Arch Intern Med 2006;166:1842-47

Steno-2 Post Trial

Impact of medication discontinuation on mortality

Medication one month after discharge

Ho et al. Arch Intern Med 2006;166:1842-47

Steno-2 Post Trial

Drug therapy underused in DM

Cohort of 12106 patients with type 2 diabetes

Cardiovascular disease

CMAJ 2004;171:1189

Cost-Effectiveness of Intensified Versus Conventional Multifactorial Intervention in Type 2 Diabetes

Results and projections from the Steno-2 study

AIM

To assess the cost-effectiveness of intensive versus conventional therapy as applied in the Steno-2 study from the perspective of a Danish reimbursement authority

Discussion and Conclusions (1) Putting the findings into perspective

Discussion and Conclusions (2) Putting the findings into perspective

Conclusion

- Intensified multifactorial treatment in type 2 diabetes prevents both micro- and cardiovascular disease as well as mortality
- Early intervention is more beneficial than late
- The most important treatment modalities for CVD may be treatment of dyslipidemia and hypertension
- Optimal treatment of hyperglycemia still represents a major challenge regarding treatment goals and use of specific drugs

Conclusion

- Drug use in type 2 diabetes is insufficient and not according to guidelines because of physician inertia
- Continuous motivation of both patients and health care providers is
- Multiple risk factor intervention in type 2 diabetes is cost-effective